

(Physics)

5 Electricity and Magnetism

5.1: Electrostatics

Coulomb's law: $\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r}$

Parallel plate capacitor: $C = \epsilon_0 A/d$

Electric field: $\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$

5.3: Capacitors

Capacitance: C = q/V

Spherical capacitor: $C = \frac{4\pi\epsilon_0 r_1 r_2}{r_2 - r_1}$

Cylindrical capacitor: $C = \frac{2\pi\epsilon_0 l}{\ln(r_2/r_1)}$

Capacitors in parallel: $C_{eq} = C_1 + C_2$

Capacitors in series: $\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$

Force between plates of a parallel plate capacitor:

Energy stored in capacitor: $U = \frac{1}{2}CV^2 = \frac{Q^2}{2C} = \frac{1}{2}QV$

Energy density in electric field E: $U/V = \frac{1}{2}\epsilon_0 E^2$

Capacitor with dielectric: $C = \frac{\epsilon_0 KA}{d}$

Electrostatic energy: $U = -\frac{1}{4\pi\epsilon_0} \frac{q_1q_2}{r}$

Electrostatic potential: $V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$

 $\mathrm{d}V = -\vec{E} \cdot \vec{r}, \quad V(\vec{r}) = -\int_{-\vec{r}}^{\vec{r}} \vec{E} \cdot \mathrm{d}\vec{r}$

Electric dipole moment: $\vec{p} = q\vec{d}$

Potential of a dipole: $V = \frac{1}{4\pi\epsilon_0} \frac{p\cos\theta}{r^2}$

Field of a dipole:

$$E_r = \frac{1}{4\pi\epsilon_0} \frac{2p\cos\theta}{r^3}, \quad E_\theta = \frac{1}{4\pi\epsilon_0} \frac{p\sin\theta}{r^3}$$

Torque on a dipole placed in \vec{E} : $\vec{\tau} = \vec{p} \times \vec{E}$

Pot. energy of a dipole placed in \vec{E} : $U = -\vec{p} \cdot \vec{E}$

5.2: Gauss's Law and its Applications

Electric flux: $\phi = \oint \vec{E} \cdot d\vec{S}$

Gauss's law: $\oint \vec{E} \cdot d\vec{S} = q_{in}/\epsilon_0$

Field of a uniformly charged ring on its axis:

$$E_P = \frac{1}{4\pi\epsilon_0} \frac{qx}{(a^2+x^2)^{3/2}}$$

E and V of a uniformly charged sphere:

$$E = \begin{cases} \frac{1}{4\pi\epsilon_0} \frac{Qr}{R^3}, & \text{for } r < R \\ \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}, & \text{for } r \ge R \end{cases}$$

E and V of a uniformly charged spherical shell:

$$E = \left\{ \begin{array}{ll} 0, & \text{for } r < R \\ \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}, & \text{for } r \geq R \end{array} \right.$$

Field of a line charge: $E = \frac{\lambda}{2\pi\epsilon_0 r}$

Field of an infinite sheet: $E = \frac{\sigma}{2\epsilon_0}$

Field in the vicinity of conducting surface: $E = \frac{\sigma}{\epsilon_0}$

5.4: Current electricity

Current density: $j = i/A = \sigma E$

Drift speed: $v_d = \frac{1}{2} \frac{eE}{m} \tau = \frac{i}{neA}$

Resistance of a wire: $R = \rho l/A$, where $\rho = 1/\sigma$

Temp. dependence of resistance: $R = R_0(1 + \alpha \Delta T)$

Ohm's law: V = iR

Kirchhoff's Laws: (i) The Junction Law: The algebraic sum of all the currents directed towards a node is zero i.e., $\Sigma_{\text{node}} I_i = 0$. (ii) The Loop Law: The algebraic sum of all the potential differences along a closed loop in a circuit is zero i.e., $\Sigma_{loop}\Delta V_i = 0$.

Resistors in parallel: $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$

Resistors in series: $R_{eq} = R_1 + R_2$

 R_1 R_2 R

Wheatstone bridge:

Balanced if $R_1/R_2 = R_3/R_4$.

Electric Power: $P = V^2/R = I^2R = IV$

Galvanometer as an Ammeter:

$$i_gG = (i - i_g)S$$

Galvanometer as a Voltmeter:

$$V_{AB} = i_q(R+G)$$

Charging of capacitors:

$$q(t) = CV \left[1 - e^{-\frac{t}{RC}} \right]$$

Discharging of capacitors: $q(t) = q_0 e^{-\frac{t}{RC}}$

Time constant in RC circuit: $\tau = RC$

Peltier effect: emf $e = \frac{\Delta H}{\Delta Q} = \frac{\text{Peltier heat}}{\text{charge transferred}}$

Seeback effect:

- 1. Thermo-emf: $e = aT + \frac{1}{2}bT^2$
- 2. Thermoelectric power: de/dt = a + bT.
- 3. Neutral temp.: $T_n = -a/b$.
- 4. Inversion temp.: $T_i = -2a/b$.

Thomson effect: emf $e = \frac{\Delta H}{\Delta Q} = \frac{\text{Thomson heat}}{\text{charge transferred}} = \sigma \Delta T$.

Faraday's law of electrolysis: The mass deposited is

$$m = Zit = \frac{1}{F}Eit$$

where i is current, t is time, Z is electrochemical equivalent, E is chemical equivalent, and F = 96485 C/g is Faraday constant.

5.5: Magnetism

Lorentz force on a moving charge: $\vec{F} = q\vec{v} \times \vec{B} + q\vec{E}$

Charged particle in a uniform magnetic field:

$$r = \frac{mv}{qB}, T = \frac{2\pi m}{qB}$$

Force on a current carrying wire:

$$\vec{F} = i \vec{l} \times \vec{B}$$

Magnetic moment of a current loop (dipole):

Torque on a magnetic dipole placed in \vec{B} : $\vec{\tau} = \vec{\mu} \times \vec{B}$

Energy of a magnetic dipole placed in \vec{B} :

$$\vec{U} = -\vec{\mu} \cdot \vec{B}$$

Hall effect: $V_w = \frac{Bi}{ned}$

5.6: Magnetic Field due to Current

Biot-Savart law: $d\vec{B} = \frac{\mu_0}{4\pi} \frac{i \ d\vec{l} \times \vec{r}}{r^3}$

Field due to a straight conductor:

$$B = \frac{\mu_0 i}{4\pi d} (\cos \theta_1 - \cos \theta_2)$$

Field due to an infinite straight wire: $B = \frac{\mu_0 i}{2\pi d}$

Force between parallel wires: $\frac{\mathrm{d}F}{\mathrm{d}l} = \frac{\mu_0 i_1 i_2}{2\pi d}$

Field on the axis of a ring:

$$B_P = \frac{\mu_0 i a^2}{2(a^2 + d^2)^{3/2}}$$

Field at the centre of an arc: $B = \frac{\mu_0 i \theta}{4\pi a}$

Field at the centre of a ring: $B = \frac{\mu_0 i}{2a}$

Ampere's law: $\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{in}$

Field inside a solenoid: $B = \mu_0 ni$, $n = \frac{N}{l}$

Field inside a toroid: $B = \frac{\mu_0 Ni}{2\pi r}$

Field of a bar magnet:

$$B_1 = \frac{\mu_0}{4\pi} \frac{2M}{d^3}, \quad B_2 = \frac{\mu_0}{4\pi} \frac{M}{d^3}$$

Angle of dip: $B_h = B \cos \delta$

Tangent galvanometer: $B_h \tan \theta = \frac{\mu_0 ni}{2r}$, $i = K \tan \theta$

Moving coil galvanometer: $niAB = k\theta$, $i = \frac{k}{nAB}\theta$

Time period of magnetometer: $T = 2\pi \sqrt{\frac{I}{MB_h}}$

Permeability: $\vec{B} = \mu \vec{H}$

5.7: Electromagnetic Induction

Magnetic flux: $\phi = \oint \vec{B} \cdot d\vec{S}$

Faraday's law: $e = -\frac{d\phi}{dt}$

Lenz's Law: Induced current create a B-field that opposes the change in magnetic flux.

Motional emf: e = Blv

Self inductance: $\phi = Li$, $e = -L\frac{di}{dt}$

Self inductance of a solenoid: $L = \mu_0 n^2 (\pi r^2 l)$

Growth of current in LR circuit: $i = \frac{e}{R} \left[1 - e^{-\frac{t}{L/R}} \right]$

Decay of current in LR circuit: $i = i_0 e^{-\frac{t}{L/R}}$

Time constant of LR circuit: $\tau = L/R$

Energy stored in an inductor: $U = \frac{1}{2}Li^2$

Energy density of B field: $u = \frac{U}{V} = \frac{B^2}{2\mu_0}$

Mutual inductance: $\phi = Mi$, $e = -M \frac{di}{dt}$

EMF induced in a rotating coil: $e = NAB\omega \sin \omega t$

Alternating current:

$$i = i_0 \sin(\omega t + \phi), \quad T = 2\pi/\omega$$

Average current in AC: $\bar{i} = \frac{1}{T} \int_0^T i \, dt = 0$

RMS current: $i_{\text{rms}} = \left[\frac{1}{T} \int_0^T i^2 dt\right]^{1/2} = \frac{i_0}{\sqrt{2}}$

Energy: $E = i_{rms}^2 RT$

Capacitive reactance: $X_c = \frac{1}{\omega C}$

Inductive reactance: $X_L = \omega L$

Imepedance: $Z = e_0/i_0$

RC circuit:

$$Z = \sqrt{R^2 + (1/\omega C)^2}$$
, $\tan \phi = \frac{1}{\omega CR}$

LR circuit:

$$Z = \sqrt{R^2 + \omega^2 L^2}$$
, $\tan \phi = \frac{\omega L}{R}$

LCR Circuit:

$$Z = \sqrt{R^2 + \left(\frac{1}{\omega C} - \omega L\right)^2}, \quad \tan \phi = \frac{\frac{1}{\omega C} - \omega L}{R}$$
 $\nu_{\text{resonance}} = \frac{1}{2\pi} \sqrt{\frac{1}{LC}}$

Power factor: $P = e_{rms}i_{rms}\cos\phi$

Transformer: $\frac{N_1}{N_2}=\frac{e_1}{e_2},\ e_1i_1=e_2i_2$

Speed of the EM waves in vacuum: $c = 1/\sqrt{\mu_0 \epsilon_0}$